Development of Secondary Archive System
at Goddard Space Flight Center Version 0 Distributed Active Archive
Center

Mark Sherman, John Kodis, Jean-Jacques Bedet, Chris Wacker
Hughes STX
7701 Greenbelt Road, Suite 400
Greenbelt, MD 20770
{ sherman, kodis, bedet, wacker} @daac.gsfc.nasa.gov
+1-301-441-4285 Fax +1-301-441-2392

Joanne Woytek, Chris Lynnes
NASA/GSFC
Greenbelt Road
Greenbelt, MD 20771
{joanne,lynnes} @daac.gsfc.nasa.gov
+1-301-286-4418

Abstract

The Goddard Space Flight Center (GSFC) Version 0 (VO) Didtributed Active Archive
Center (DAAC) has been developed to support existing and pre Earth Observing System
(EOS) Earth science datasets, facilitate the scientific research, and test Earth Observing
System Dataand Information System (EOSDIS) concepts. To ensure that no data is ever
lost, each product received at GSFC DAAC is archived on two different media (VHS and
Digital Linear Tape (DLT)). The first copy is made on VHS tape and is under the control
of UniTree. The second and third copies are madeto DLT and VHS media under a custom
built software package named "Archer". While Archer provides only a subset of the
functions available with commercia software like UniTree, it supports migration between
near-line and off-line media and offers much greater performance and flexibility to satisfy
the specific needs of a Data Center. Archer is specifically designed to maximize tota
system throughput, rather than focusing on the turn-around time for individual files. The
Commercid Off the Shelf Software (COTS) Hierarchical Storage Management (HSM)
products evauated were mainly concerned with transparent, interactive, file access to the
end-user, rather than as a batch-oriented, optimizable (based on known data file
characteristics) data archive and retrieval system. This is criticd to the distribution
requirements of the GSFC DAAC where orders for 5000 or more files & a time are
received. Archer has the ability to queue many thousands of file requests and to sort these
requests into internal processing schedules that optimize overall throughput. Specificaly,
mount and dismount, tape load and unload cycles, and tape motion are minimized. This
feature did not seem to be available in many COTS packages. Archer aso utilizes a generic
tar tape format that allows tapes to be read by many different systems rather than the
proprietary format found in most COTS packages. This paper discusses some of the
specific requirements at GSFC DAAC, the motivations for implementing the Archer
system, and presents a discussion of the Archer design that resulted.

Introduction

One of the critical components within the DAAC's Data Archive and Distributed System
(DADS) isthe HSM system. Severa years ago, UniTree was chosen as the best candidate

301

to satisfy the GSFC DAAC 's requirements providing both the basic HSM functions and
the device drivers for the planned robotic devices. After months of integration and
customization, UniTree reached some stability but it fell short of the GSFC DAAC
throughput requirements[1], and was limited in the configurability of the archive, retrieval,
and caching systems based on data-specific characteristics; e.g., Size, volume, likely reuse,
multiple versions, etc. It also became apparent that this product and other similar
commercial products were not fully suited for this domain of application.

Archer is an in-house software package that was developed by the GSFC DAAC to
provide management of secondary and tertiary backup copies of dl datasets stored in the
archive. Archer was developed to remedy some of the magor drawbacks of HSMs, such
asUniTree, in handling adata (vs. file) archival system. In particular its design was kept
simple and tailored to handle data requests with large number of files and varying files
characteristics. Performance was a key consideration in the design of the system and its
highly pardle distributed architecture allows the system to be scaled to much larger
archives. This paper starts by presenting an overview of the functionality needed for the
GSFC DAAC to be afully operationa Data Center. The overall hardware architecture to
meet the needs of the GSFC DAAC is described, followed by a discussion on what led the
GSFC DAAC to the development of Archer. The architectural design of Archer is
presented with its main features. Finaly, the status, lessons learned, and future work are
briefly described.

GSFC DAAC functions and architecture

The GSFC DAAC can be viewed as composed of three main components which are a
Product Generation System (PGS), an Information Management System (IMS), and a Daa
Archive and Distribution System (DADS). The PGS and IMS are respectively associated
with the production of higher level products and the catal og holdings searched and browsed
by researchers. The DADS controls the overall processes of the ingestion of new data and
the distribution of data requests. The migration between near-line and on-line devices is
handled by both UniTree and Archer, however only Archer has the full capability to
migrate media between near-line and off-line. For historical reasons, UniTree is currently
responsible for the primary archive. Secondary and atertiary archives, under the control of
Archer, use respectively DLT and VHS as archive media. The Metrum RSS-600
Automated Tape Library (ATL) with 5 RSP-2150 drives and 600 VHS cassettes (for a tota
capacity of upto 8.7 TB) is shared by UniTree and the tertiary archive. Most tapes in the
ATL and four of the five VHS drives are controlled by UniTree. The secondary archive is
composed of three DLT 7 cartridge stackers. While UniTree and the tertiary archive are
run on an SGI Challenge L, the secondary archive is executed on an SGI Challenge S.

Two SGI 4D/440 workstations are being used to test new version of the DADS, IMS,
Archer software and new releases of UniTree. Having dedicated test machines is very
important to avoid affecting the day to day operation & the GSFC DAAC. Several SGI
machines are also used to process Pathfinder Advanced Very High Resolution Radiometer
(AVHHR) land products and to perform Qudity Assessment (QA) on new products
generated. Figure 1 and 2 and Table 1 illustrate some of main platforms acquired by
GSFC DAAC aong with their specific functions.

302

GSFC LAN
R
Producers

Internet
Ebnet WAN GSFC VO EOSDIS FDDI LAN
f [—
1 I GSFC VO EOSDIS Jhernet LAN
staging
2468 i Distribution
media/ft, systest
var/tmp Stagingp 1o8
2.9GB Anonymous 5
CD-ROM 60.8 G
user temp
() acctest
I
"eosdads2"
ingest/media
distribution logs
"eosdads" Oracle & SGI Challenge XL 1 é’B
Unitree/archive local S/IW D 512 MB Memory
SGI Challenge L 3GB 1268 4R4400 CPUs
256 MB Memory nfs from "eosdata” (200 Mhz) user
4R4400 CPUs data dbluser access Irix 5.3 temp
(1:8(“Efgz) Unitree db SGI Challenge L 168
- 2GB 256 MB Memory daac logs
A 4 R4400 CPUs 0.4 GB 2480 Tape
(250 Mhz) 2 Drives CD-ROM 8 mm Tape
Irix 5.3 9 Drives
(One Stacker) 4 mm Tape (four Stackers)
CD-ROM 9 Track Tape 6 Drives

8700 GB Automatic Tape
Cartridge System
5 Drives
1drive used for secondary
backup outside of UniTree

3 Drives (One Stacker)

Figure 1 GSFC DAAC 1996 Configuration as of 2/28/96 (1 of 2)

GSFC LAN

Internet
Ebnet WAN GSFC VO EOSDIS FDDI LAN
—
IGSFC VO EOSDIS Ethernet LAN 1
dads log ingest |
Oracle & 168 4GB
acctest
laac SIW da‘:t:;es system
Backup 168
Staging medialftp
7.1GB anonymous 4GB wmp
s 1GB
5GB
tmp
ree QA staging
11GB
System disk
16l

“eosback"
backuplarchive
SGI Challenge S
64 MB Memory

1 RA4400 CPUs

(150 Mhz)

Irix 5.3

DLT
Tape Drive x 3
(3 Stackers (7 tapes))

“eostest2"
acctest/systest
SGI 4D/440 VGX
256 MB Memory
4'R3000 CPUs

(40 Mhz)

Irix 5.3

CD-ROM

Sonyworm

8mm Tape
1Drivel
(one Stacker)

"eostest”
test dads
SGI 4D/440 S
128 MB Memory
4 R3000 CPUs
(40 Mhz)
Irix 5.3

1179 GB WORM
Optical Jukebox
2 Drives

Figure 2 GSFC DAAC 1996 Configuration as of 2/28/96 (2 of 2)

303

SGlI Indigo2
160 MB Memory
1CPUSs R4400

System disk
1GB

"eosqa”
data prep
CD-ROM

(150 Mhz)
Irix 5.3

Machine name Function Hardware description

EOSDADS run _Unitree & tertiary | SGI ChalengeL, 256 MB memory
archive 4 R4400 CPUs (150 Mhz)

- Metrum RSS600 automeatic library
- 32 GB UniTree stage disks

EOSBACK run secondary Archive SGI Chdlenge S, 64 MB memory
1 R4400 CPU (150 Mhz)
- DLT stackers

EOSDATA run IMS and Orade| SGI Chalengel, 256 MB memory
Database 4 R4400 CPUs (250 Mhz)

- 24 GB ftp stage disks

- 275 GB anonymous ftp

EOSDADS? run ingestion & distribution | SGI Challenge XL, 512 MB memory
4 R4400 CPUs (200 Mhz)

- 36 GB ingest staging disks

- 61 GB distribution staging disks

- 8mm drives
- 4mm drives
- 3480 drives .
EOSTEST?2 test software in acctest & [SGI 4D/440 VGX, 256 MB memory
systest 4 R3000 CPUs (40 Mhz)
EOSTEST test dads software & new | SGI 4D/440, 128 MB memory
version of UniTree 4 R3000 CPUs (40 Mhz)
_ - 8 GB UniTree cache
EOSQA run data product QA SGI indigo 2, 160 MB memory

1 R4400 CPU (150 Mhz)

Table1l. Hardware at the GSFC DAAC

Criteria for the development of a secondary archive

This paper now focuses on issues faced by the GSFC DAAC during the last two years and
some of the specific requirements that led to the development of a secondary archive
system.

Over the years, the GSFC DAAC has faced problems with the HSM system UniTree and
the archive media (VHS tapes and 12" WORM opticd platters). In particular, UniTree did
not work very well when 12" WORM optical drives were working concurrently with the
VHS tape drives. Unitree aso did not satisfy the general throughput requirements, and
proved difficult to configure based on evolving data characteristics and data request
profiles. While some issues have been resolved, others still remain open. Additionaly,
occasiond loss of data due to media failure, UniTree software failures, aong with a
requirement from the Seaviewing Wide Field of View Sensor (SeaWiFS) project
necessitated the need to keep a second copy of al products. It became apparent that there
was an urgent need for a secondary data archive system that would hold a backup copy of
all data received a the GSFC DAAC, would take over in case the primary system failed,
and if successful inincreasing throughput, could be used as a primary retrieval system. At
the time UniTree was not fully stable and the GSFC DAAC was under increasing need to
provide better, more reliable data retrieval and a robust data recovery capability which did

304

not rely on the data provider to re-send lost data. The choices were either to purchase a
second COTS product or to develop our own secondary data archival system. The data
archive system was intended to mostly store data to archive tapes, track file location and
tape utilization, and to handle both near-line and off-line tapes. Most COTS packages
evaluated were deemed too sophisticated and expensive for the smple set of requirements
that had been identified. Further, many of the COTS HSMs, which were oriented towards
transparent, interactive file retrieva functionality, did not seem to fully meet these smple
requirements. This was particularly true for automatic migration of media between near-
line and off-line storage, and large, batch oriented file/data requests. Our experiences with
the UniTree COTS package a so pointed out other problems with commercia HSMss, such
as performance bottlenecks and maintainability issues. For these reasons, the decision was
made that the GSFC DAAC would gain by developing its own secondary data archive
system. The remainder of this section focuses on some of the criteria that were factored
into the secondary archive design.

As mentioned above, UniTree was designed around limited, interactive file access which
imposed limitations that were undesirable for a large scae science data center. For
instance, UniTree limits the number of concurrent stage operations (around 100) which
causesmgjor problems when large number of files are to be staged. Also, the order of
requesting and staging data, along with adequate feedback on both successful and
unsuccessful retrievals, are critical, both to achieve good performance, and to simplify the
media distribution process. For example, arequest may need a set of files staged and then
copied to a number of 8mm tapes for distribution in the time order in which the data was
initially produced. The request would best be handled by staging in the time order to be
distributed, particularly if multiple distribution tapes will be needed. Additiondly, in a
production environment it is not unusua to have unexpected hardware and software
problems or unexpected workloads that must be rectified manually. Therefore, it is
important to have full control over the archive, letting the system run by itself, but alowing
operators to take control of the system when needed. To provide flexibility and adaptability
to facilities with the needed requirements and resources, HSMs should have an Application
Program Interface (API), which many commercia products either do not provide or
provide with very limited capabilities. It would be highly desirable to have standardized
APIsto facilitate transition to a new HSM when needed.

A key element of atypical dataretrieval request submitted at the GSFC DAAC is the need
to stage, in one request, alarge number of small files. Some HSMstend to perform poorly
when several hundred or thousand of files need to be staged, even if the files reside on few
tapes. Other products put alimit (e.g. 100) on the number of stages that can be submitted
a once, reducing overal performance, requiring substantial software design to properly
handle the staging, and having a large impact on the day to day operations. On average,
most of thefiles currently archived at the GSFC DAAC are small (around 1 MB) while data
requests range from a single file to several thousand files a a time, resulting in a high
penalty when retrieved from tapes. The overhead of the pick, mount, load, search and
rewind operations is high compared to the read/write operation which may take only a few
seconds for these small files. Consequently, it iscritical to minimize the number of mounts
and maximize, whenever possible, the amount of files read/written per mount. It is
therefore desirable to sort the order in which files are transferred to and from tapes by
which tape they are on and their position on the tape. This may be achieved by knowing
the physical location of the files on tapes and then writing software to request the files in
that order. Unfortunately, this information is not easily available in HSMs such as
UniTree. To maximize system throughput, it is aso necessary to keep data transfer rates
to/from the storage devices at nearly the limitsimposed by the hardware. Detailed analyses

305

were done on the performance of the VHS drives under UniTree, and it was shown that
data transfer rates were substantialy less inside UniTree than those measured outside
UniTree, even with just asingle drive operating [1].

Performance isa key issue in an archive, but other considerations such as interoperability
are equaly important. HSM vendors with their own proprietary formats make the
trangition to another HSM very difficult and expensive. This can have disastrous
consequencesif a vendor decided to stop marketing their products or to stop support of a
given hardware device, as was the case for UniTree and the Cygnet jukeboxes at the GSFC
DAAC. The situation worsens as the size of archives increases dramatically (Petabytes).
The GSFC DAAC aso has a requirement to migrate al of its archived data under the
control of the Version 0 system to the next generation system. By storing the datain anon-
proprietary, generaly used format such as tar, migration can be more easily and quickly
accomplished, since all that is required is to physically move the tapes to the new system.
Theinteroperability of the tapes can be resolved by having one or several standardized tape
format(s). Thisisdifficult to achieve when vendors disagree on the merits of the formats
and have aready invested large amount of money in them. Another approach may be to
provide a mechanism for HSMs to recognize and read formats from various vendors and
do thiswithout sacrificing performance. Animportant feature that is not always availableis
the ability to reconstruct the data base from the data itself. For instance, UniTree data is
useless without the UniTree data base. These problems have been recognized and an
Information and Image Management Internationa (AlIIM) File Level Metadata for
Portability of Sequential Storage Media group has been formed to address some of these
issues. Thisgroup met for the first timein April 1996, in Chicago, lllinois.

Faced with storage requirements growing exponentially and limited budget, it may be
necessary to store data off-line. This solution is even more attractive in a data center where
many tapes are seldom requested. This feature seems to be ignored or is limited a best
with some HSMs. It isnot sufficient to indicate that the tape is off-line. At a minimum the
physica location of each off-line media should be known by the HSM and operators
should be prompted to transfer media between near-line and off-line in an efficient manner.
This should be viewed as another level of hierarchy with full functionality, and dtatistics
should be made available.

A key issuein any Data Center is the dataintegrity and the data preservation. To ensure the
highest quality for al data ingested and distributed to the users, it is important to capture,
report, and react to errors in a usable way. These errors could occur with the media, the
drives, the disks, or be related to some software problems. Even soft media errors may
need to be monitored to identify archive media degradation. Data corruption needs to be
automatically detectable through methods such as computation and comparison of file
checksums upon all archival and retrieval requests. In spite of being critical, errors are not
always provided with enough information, are often listed in acryptic form, are difficult to
locatein log files, or are simply not reported. Programs requesting the data are often not
provided with adequate feedback to respond to both critical (e.g., hard media) failure and
non-critical (e.g. soft media) failures. This creates confusion, requires a high level of
expertise, and can have a detrimental impact on day to day operations. Error detection is
not sufficient in itself and "smart" agorithms should be in place to take appropriate actions
after errors are discovered. For example, a configurable limit should be set pertaining to
the number of retries to read or search for a file. Another example may be to not
automatically mount new media when an unrecoverable write error is detected, since the
problem could be due to a bad drive and could result in numerous new tapes being
discarded. Similar problems can occur with WORM optical mediawhere afailure due to a
bad drive is incorrectly interpreted to be a media failure and a new media is requested.

306

When the request again fails, another new media is requested, and so on, until operators
notice the problem and shut-down the operation. This can cause the loss of many platters
and requires extensive manual intervention to rectify this situation . These examples
illustrate that the hard-coded error handling policies implemented for general, success-
oriented operations do not always function well within a large, operational system. These
policies are easily correctable and changeable. Changing policies and requirements may be
atrivid task to implement with an in-house system, but may be much more difficult to
integrate with acommercia package.

When dealing with very large science data centers (Petabytes), scalability is a mgor issue.
An HSM should be designed to scale not only with the volume but also with the number of
filesbeing archived. This may require distribution of the software as well as the hardware.
Implementation of a Unix file system or a virtua disk system is not regarded as a viable
solution because of itslimitations. There is a limit in the operating system on the number
of concurrent open calls. The name server in an HSM can also become a bottleneck with
very large number of files and some of the modules composing a data archive system may
have to be distributed over severa machines to spread the load more evenly.

Purchasing a commercial product such as an HSM provides many advantages. On the
other hand, there may be magjor drawbacks that should be diligently evaluated before
making any decision regarding the need for a COTS product versus an in-house product.
One mgjor problem experienced at the GSFC DAAC was the integration of UniTree with
custom archive and distribution software. The task was difficult, time consuming,
expensive to implement, and caused long delaysin the delivery of the whole system. One
solution was to request the vendor to incorporate the desired functionality in a new release.
However, these functions may be too specific to have market value; or when there is
interest to other users, it usually takes months, if not years, before design, integration and
release. Another approach isto contract the integrator to develop specific functionsthat are
not part of the core commercial product. Besides the length of time to set-up the contract,
provide the requirements, and then design, write, test and integrate the functions, there is a
high risk involved in tailoring a commercial product to meet specific needs, as each new
release of the product may require new customized development resulting in a high cost.
All together, the process can be extremely lengthy in time and frustrating in having to write
work-around software or procedures to try and handle the situation while waiting for the
vendor to react. HSMs are rather complex systems, built for specific, well-defined
systems, and are not without flaws. Some of these bugs may seriously limit how the
system can be used and it may take weeks or months to obtain a patch to fix the problem.
While requiring in-house resources and expertise, there is more control with programs
developed in-house. Bugs can usualy be rectified more quickly and decisions can be
made internaly to prioritize them. Moreover, the experience we had with UniTree and the
discussion we had with other colleagues tend to confirm that HSMs have not yet reached
the stage of maturity found in products such as data base management systems.

Part of the original charter of the GSFC Version 0 DAAC was to test EOSDIS concepts
and standards. Experimentation with various HSM strategies and the development of
Archer as a possible dternative to commercia HSM products fit within that charter.
Having an in-house product would also increase the ability to add new media types, which
usually takes place on alonger time scale with COTS. The high cost of commercid HSMs
is another consideration that cannot be ignored and contributed heavily in the decision to
develop Archer. Thisis even more important in a distributed environment where a home-
grown HSM can be freely redistributed whereas a COTS has to be licensed for multiple
platforms and sites. In addition to the expensive purchase price, there is usualy a high
maintenance cost and some integration development costs that makes commercial HSM

307

solution less attractive. While the preference isto use acommercial product, in some cases
no commercia product can satisfy specific and unique needs, and the developer must rely
too much on companies whose goals are oriented towards dightly different requirements or
functions. A key to the usability of a COTS product is whether its main functionality
matches or just resembles one' s needs. If just resembling one's needs, as was the case of
COTSHSM packages and the science data needs of the GSFC DAAC, then attempting to
either fit the COTS package into adightly different functionality or assuming new releases
to include the required functionality can be costly in time, resources, maintainability, and
usability . These are some of the arguments and justifications that led to the design and
development of a secondary archive system at the GSFC DAAC. One can hope that HSMs
will become, in the near future, mature and flexible products that satisfy a vast and varied
guantity of customers at a reasonable price.

Design of the secondary archive

Archer is a hierarchical storage management system that was designed to satisfy the
requirements specified in the previous section. Files can reside in a cache, be roboticaly
accessible, or be on atape off-line. Users do not need to know the physical location of the
files (data transparency), however, thisinformation is easily and rapidly accessible through
an API or by querying the Oracle data base which is used to keep track of file locations.
The use of arelational data base facilitated and expedited the development of the system and
provided ajournal fileto insureintegrity of the archive database. Migration between cache
and tape is automated and data can be stored and organized by families. For instance, a
family can represent al files that belong to a specific product and level. The Archer file
names are smilar to the ones used in Unix, yet there is no implementation of a Unix file
system. Consequently, commands such as open/close are not available and others, such as
Is must be simulated through database SQL commands (e.g., and "as' command is
provided to simulate |s). Files are simply requested to be stored or retrieved to/from the
archiveviaPUT and GET operations. Multiple users can be serviced smultaneoudly and
the client/server architecture has been designed to permit a distribution of the various
servers among different machines to make the system scalable.

Archer file names have two parts. The first part identifies the directory to which a file
belongs. The second part identifies the file. Both the directory and the file part can be any
arbitrary string of characters (e.g. "/" are not required) but by convention, the names have
been chosen to be consistent with Unix. Each directory is assigned to a family when
created and is stored in an Oracle database table. The first part of a file name must
completely match one the Archer directories, the part remaining is considered the file name.

The architecture of Archer isillustrated in Fig. 3. The main components of the system are
defined as:

client interface (API): Thisisaseries of C-calable entry points through which requests are
originated. A reguest can be made to archive files, retrieve files, list files, delete files, list
directories, list families, add tapes, list tapes, delete tapes, and flush families. All client
interfaces communicate with a single archive server process.

Files can archived and retrieved in any size batch using ether a synchronous or
asynchronous method. The client is responsible for copying files out of cache during afile
retrieval request. Command-line wrappers exist around al API functions so that the Archer
internal s can be accessed from the shell.

308

archive server: Only one archive server exists per archive. The archive server supports
multiple file servers, and is responsible for directing message traffic between client
processes and file servers or regjecting any requests which contain invalid information. The
archive server can run on any machinein the archive.

file servers. Each file server isresponsible for managing requests and file tables for a set of
families in the archive. The file server manages cache space for dl requests and verifies
that the requests are satisfied. Each file server can manage multiple cache directories. Each
file server supports multiple storage managers. For performance reasons, file servers may
run on different machinesin the archive.

copy server: A copy server isasmall process which receives requests from the file servers
to copy files into cache for archive requests. The copy server can copy a configurable
number of filesinto cache in parallel. The copy server exists to minimize the overhead
involved with forking processes to copy filesin parallel. One copy server runs on each
machinein the archive.

storage managers. Each storage manager is assigned a subset of the file server's families.
Each may manage a different mediatype. The storage manager isresponsible for managing
and ordering the storage/retrieval of requests to/from tape. Each storage manager supports
multiple storage servers, al of which must contain the same mediatype.

storage servers. Each storage server controls an individual storage device whether it is a
single drive, a stacker, or a more complex multiple drive robotic system. The storage
server isresponsible for al activities involved in the storage/retrieval of files to/from tape.
These activities include the loading/unloading of tapes to/from drives, tape positioning, tape
verification, and the reading/writing of files to/from tape. Each type of storage server has
its own type of ACE control display.

Archive Control Environment (ACE):

Thisis a GUI interface through which the operator and the archive interact. The ACE
interface displays the status of the storage server and the device it is monitoring. This
status includes whether the device is on-line, off-line, reading, writing, or idle, and the
names of the tapesin the dots of the device, if applicable.

Through thisinterface, an operator may be notified of various events (e.g. system restarts,
tape write errors), some of which may require a response. An operator may be prompted
to mount a series of tapesin various dots of the device, or they may issue a request to load
tapes manually.

309

Storage
Server

Storage
Server
Storage
/ Server
e
anagey
Storage
I Server

Client
API

Client
API

Archive
Server |
‘:‘ Machine B |
S
Client Server
API /

/

, y
Client
API

Fig 3 Archer Architecture

PUT and GET scenarios

Inatypica PUT scenario, the client sends arequest to the archive server to archive a file(s)
to a specific family. The archive server directs the request to the appropriate file server.
Thefile server alocates disk space in the cache and sends a message to the copy server to
transfer the file(s) into the cache. After the file is copied to cache, a message is sent back
through the system, informing the client of the cache transfer status. In a successful cache
transfer, a message is sent to the appropriate storage manager. The storage manager
receives and queues requests of successful cache transfers and waits for a pre-defined
number of files (by family) to be staged in the cache before submitting a request to the
storage server to copy the files to tapes. Finally, the storage server mounts the right tape
and writes the data to it.

Inatypical GET scenario, the client sends the request to the archive server which forwards
it to the appropriate file server. The file server identifies whether the file(s) resides in the
cache. When thefileisnot in the cache, the file server alocates disk space in the cache and
sends a message to the storage manager to retrieve the file. When the storage manager

310

determines the time is right to fetch the file, a message is sent to the appropriate storage
server, the right tape is mounted, and thefile is read from tape into the cache. A messageis
then transmitted back through the system informing the client of this transfer. To avoid
authorization problems the client is responsible for copying data from the cache to its
location.

Archer storage format

In designing the Archer storage format, the option of using a proprietary format such as the
one implemented in UniTree was rgjected due to concerns with portability, and flexibility.
Another important consideration was the ability to reconstruct the metadata directly from
tape without the need of the database. This feature can be useful in the event of a disaster
and can also facilitate the migration to another archive system which may not have access to
the database system. There is no official standard archive format available but tar is a de-
facto standard with Unix and other platforms, and for this reason was selected as the best
candidate to satisfy our requirements. As mentioned above, the GSFC DAAC average file
size (at the current time) is relatively small (1 MB) and, therefore, saving each file in a
separate tar format would result in aheavy performance and space penalty. To dleviate this
problem, groups of filesare saved in atar file called a"save set” prior to being migrated to
tape. The number of files to tar together is usually selected so that a "save set” is around
50-100 MB for a1-2 MB/stape drive. The size of the save set is configurable for different
media and data types (i.e., families) in order to best utilize the performance characteristic of
the tape drives based on the file characteristics of the data. When afileis requested from an
Archer tape, the whole save set where the file resides is read from tape and untared on the
fly. Reading a save set takes longer than reading a single file but this penalty is smal
compared to the high overhead associated with the mount/|oad/search times. In addition,
since the data requests are based on high quantity, batch file retrievals, neither single file
access (such as provided by UniTree) or, the even more granular, block oriented access
(such as provided in the AMASS HSM system) provide any benefit, and can, in fact ,hurt
overall performance for thistype of system. The Archer storage format is illustrated in Fig
4.

Error detection and recovery

From the beginning of the design of Archer, specid care was given to error detection and
recovery. Thisiscritical not only to minimize impact on day to day operations but also to
insure the integrity of the data archived and distributed at the GSFC DAAC. The first type
of errors to examine is media failure. When a tape write error is detected, severa pre-
assigned and operator configurable number of attempts are executed. Continued failure will
cause an operator prompt to occur with the option to continue retrying the operation, to
ignore the requested operation, or to retry the operation on a different tape in the case of a
hard write error. 1f the operator chooses to ignore the requested operation, he/she can then
take the suspected drive off-line to avoid continuous operator prompts resulting from this
write error. With a tape read failure, the read operation is retried for an operator
configurable number of times, then marked as failed. Operators are notified on their
terminals of the media problems.

311

saveset | saveset saveset saveset

1) N ot
tar ter i file file tar tar
file volume :cnldex 1 N i volume
ile ile
name name

medi um_name: XXX tape name
’ﬂv@et—”“m' 2 # saveset number
ASCI family_name; XXX tar
) file 1: family_directory file_name volume | . —
file | file2: family_directory file name label | denticalin
nes y- yel every saveset
on tape
File N: family_directory file_name
Fig 4 Archer tape format
Performance

One of the main considerations in the design of Archer was to develop a system with good
performance. The emphasis was on the gross throughput of groups of related files as
opposed to single-file turn around time. In order to achieve this objective severa key
features have been implemented. As mentioned above, files are grouped in save sets,
improving the performance of a system with small files. To increase the hit cache ratio, a
cache management algorithm has been developed on the file server with the capability to
easly include new scheduling algorithms if desired. Improved log messages have aso
been designed to track the status of each file (examples: staged and purged) in the system
and to monitor and generate performance statistics. New files ingested in the system are
gueued in the cache and copied to tape only after a pre-assigned volume of data is reached.
Thisalows alarge volume of data to be copied with a single tape mount. Files requested
arefirst searched for in the cache. When the files are not located in the cache, Archer will
sort filesin the order they are physically stored on tapes, to minimize the overhead due to
file positioning on the tape and the mounting and dismounting of tapes. Archer was
developed with a multi-threaded client/server architecture and multi-threaded tape 1/0
architecture that provides efficient streaming of tape drives. The DLT tape drives have been
tested to read/write close to the peak transfer rates advertised by vendors. Having alarge
database that contains the logical to physical relationship provides easy to utilize

312

information but, due to the size of the files (millions) and the need to continuously access
the table, performance is adversely affected. To partly aleviate this problem, the first part
of the file name maps to the family name, which allows a quick identification of the table to
which the file belongs. As mentioned in the Status and Future Work Section, future
versions of Archer will be independent of arelational database system.

Operational concepts

One of the goals of Archer wasto facilitate the operationa activities at the GSFC DAAC as
well asthe jobs performed by operators. One of the features of ACE (utilizing a graphical
Tcl/Tk interface) isto provide a message button that highlights problems encountered. For
example ACE (see Fig. 3) may list a tape write error . Archer processes are carefully
monitored by an overseer process and if a problem arises, a message is displayed to
indicate if the processes exited normally, abnormally, or failed dueto asignal. In the event
of failure, the archive is automatically restarted and the operator is notified.

Table 2 summarizes the issues discussed above.

313

Table 2. Summary

of Archer Features and Functions

I ssues

Featur es

Good performance

-low overhead to sustain operation at near tape speed

- minimize number of mounts

- maximize number of files requested from tapes

- multi-threaded tape I/O

- multi-threaded client services

- hierarchical storage (disk cache, magnetic tape, off-line)
- sort file read order by tape

- allow large batch reads for improved sorting

Interoperability

- no proprietary tape format (use tar)

- open system

- self contained (contains data & metadata) (HDF)
- recreate metadata dbms from reading tapes

Large requests of small files - save set
Archive management - support on-line, near-line, and off-line media
Flexible - APl

-configurable parameters (based on data type or families, media,
system, etc.).

Capture and monitor errors

- tape drive

- media

- disk cache failure

- ACE display/monitor system

Error recovery

- beforefileis cached
- before migration
- during migration

Scalable system

- distributed H/W
- distributed S'W
- distributed storage devices

Administration

- reliable
- archive multiple copies
- collect statistics
- errors
- performance
- facilitate migration from VO to V1
- reduce dependencies on vendors
- minimum coupling with DADS software
- simplify integration
- simplify exportation
- integrity
- journal file
- support operator assisted off-line tape access

Kept simple

- does not implement a Unix file system

- file name similar to Unix file system

- simple synchronous and asynchronous put/get user interface
- retrieval is by family and file identifier

- COTS software to handle archive database

Hierarchical storage management

- files can bein cache, on tape, or off-line
- identical storage and retrieval operations
- automatic migration from cache to tape

314

Status and Future work

Sinceitsdelivery in Fall 1995, Archer Version 4.4 has been used on severa occasions to
recover lost files. Based on random audits, no file loss from Archer has yet been detected
and Archer outperforms UniTree in archive operations, especially with large batches.
There have been some operationa problems. For example, some unexpected tape errors
have occasionaly caused the Archer system to hang. Also, only one single cache disk is
currently supported and file and tape statusis available only through SQL database queries.

The next build of Archer, scheduled to be operational in August 1996, should improve the
overal performance through better internal scheduling of database operations. Multiple
cache support has been added. Error recovery has been modified to prompt operators
when severa tape retries failed and to provide a choice of options. A globa process
monitors Archer and alerts operators to any problem detected.

Severa other NASA groups have expressed an interest in Archer and there are plans to
enhance Archer to be more like a COTS package with full documentation and its own
configuration management (independent of the DADS development). The two main
features envisioned are to remove Archer dependency on Oracle by maintaining the needed
information internally and in disk files, and to improve the storage manager and storage
server to better support new robotic devices and drives.

Conclusion

The GSFC DAAC has successfully designed and implemented a secondary archive system
with a staff of one to three programmers over a fifteen month period. The initial release
was operating after only seven months of design, development and testing. Though till in
itsinfancy, Archer is satisfying the most pressing needs of the GSFC DAAC.

While Archer provides only a subset of the functions available with COTS software like
UniTree, it supports migration between near-line and off-line media and offers good
performance and flexibility. By selecting tar as tape format, Archer makes data more
portable between Unix systems.

References
[1] Architecture and Evolution of Goddard Space Flight Center Distributed Active Archive
Center, Jean-Jacques Bedet, Wayne Rosen, Mark Sherman, Hughes STX; Phil Pease,

NASA/Goddard Space Flight Center, NASA Conference Publication 3295, March 28-30,
1995.

315

